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a b s t r a c t 

Online streaming feature selection, as a new approach which deals with feature streams in 

an online manner, has attracted much attention in recent years and played a critical role in 

dealing with high-dimensional problems. However, most of the existing online streaming 

feature selection methods need the domain information before learning and specifying the 

parameters in advance. It is hence a challenge to select unified and optimal parameters 

before learning for all different types of data sets. In this paper, we define a new Neigh- 

borhood Rough Set relation with adapted neighbors named the Gap relation and propose 

a new online streaming feature selection method based on this relation, named OFS-A3M. 

OFS-A3M does not require any domain knowledge and does not need to specify any pa- 

rameters in advance. With the “maximal-dependency, maximal-relevance and maximal- 

significance” evaluation criteria, OFS-A3M can select features with high correlation, high 

dependency and low redundancy. Experimental studies on fifteen different types of data 

sets show that OFS-A3M is superior to traditional feature selection methods with the same 

numbers of features and state-of-the-art online streaming feature selection algorithms in 

an online manner. 

© 2018 Published by Elsevier Inc. 

1. Introduction 

Given a nonempty finite set of attributes (features) A = C ∪ D, where C is the condition feature set and D is the decision 

feature set, the classical feature selection problem aims to select a subset of C , which can be used to derive a mapping func- 

tion from samples to classes that is “as good as possible” according to some criterion [14,18] . A variety of feature selection 

approaches have been developed during the last three decades [6,8,19,22,26,27] . 

All these traditional feature selection methods assume that all the features in C are available before learning. However, 

in some real-world applications [31] , features are generated dynamically and arrive in order. Streaming features are defined 

as features that flow in one by one over time whereas the number of training examples remains fixed [33] . A real-world 

example is the Mars crater detection from high-resolution planetary images [4] . It is infeasible to acquire the entire feature 

set which would have a near-global coverage of the Martian surface. Meanwhile, with the increasing of the scale of data, 

traditional batch feature selection methods cannot meet the demand for efficiency anymore [1,16,34] . An example for this 
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is the Web Spam Corpus 2011, a collection of approximately 330,0 0 0 spam web pages and 16,0 0 0,0 0 0 features (attributes) 

[28] . 

Online streaming feature selection which deals with feature streams in an online manner, has attracted much attention 

in recent years and played a critical role in dealing with high-dimensional problems [20,21,30,33,37,40] . For example, OSFS 

(Online Streaming Feature Selection) [33] , a method of selecting strongly relevant and non-redundant features on the fly 

and SAOLA (a Scalable and Accurate OnLine Approach) [37] , which employs novel online pairwise comparison techniques 

to address the extremely high dimensionality and highly scalable challenges in an online manner. However, both OSFS and 

SAOLA need to specify the parameter α in advance, which affects the dependence and independence test. All aforementioned 

algorithms need the domain information to specify some parameters in advance. It is hence a challenge to select unified 

and optimal parameters before learning for different datasets. 

Rough Set Theory, proposed by Pawlak, has been proven to be an effective tool for feature selection, rule extraction, 

and knowledge discovery [17] . One of the most important advantages of Rough Set based data mining is that they do not 

require any domain knowledge other than the given dataset. There are many works using rough sets for feature selection 

[5,12,15,24] . For example, OS-NRRSARA-SA [5] is a classical Rough Set based online streaming feature selection method, 

which needn’t specify any parameters in advance. However, the classical Rough Set was originally proposed to deal with 

categorical data. In real-world applications, there are many numerical features in data sets and classical Rough Set based 

feature selection algorithms cannot handle numerical data directly. Thus, Neighborhood Rough Set which supports both con- 

tinuous and discrete data was proposed to deal with this challenge [9–11,13,39] . Nevertheless, all these methods mentioned 

above were proposed for traditional feature selection and they cannot handle online streaming feature selection directly. 

Meanwhile, most of them need to specify some parameter values in advance and it is always difficult to select unified and 

optimal values for all different types of data sets. 

Motivated by this, we define a new Neighborhood Rough Set relation named Gap which automatically selects the number 

of neighbors for each target object by its surrounding instance distribution. In terms of this relation, a new online streaming 

feature selection algorithm (OFS-A3M) is proposed to handle feature selection in an online manner. Our contributions are 

as follows: 

• Most of existing online streaming feature selection methods need domain information to set parameters before learning. 

However, in real-world applications, we cannot always require the domain knowledge in advance. Based on Neighbor- 

hood Rough Set Theory, our proposed OFS-A3M algorithm does not need domain knowledge before learning. 

• It is a challenge to select unified and optimal parameters in advance for those methods which need to specify parameters 

before learning. In order to design a non-parametric feature selection method, we propose a new neighborhood relation 

using the distribution information of the surrounding instances, named Gap. With this new neighborhood relation, OFS- 

A3M can automatically select a proper number of neighbors during online feature selection and needn’t specify any 

parameters in advance. 

• In terms of three maximal evaluation criteria (maximal-dependency, maximal-relevance, and maximal-significance), OFS- 

A3M can select features with high correlation, high dependency and low redundancy. 

• In order to validate the effectiveness of our new neighborhood relation, we conduct a comparison between δ neigh- 

borhood and k -nearest neighborhood in detail. The results of Friedman test show that there is no significant difference 

between Gap and the other two relations with the optimal parameter values. Meanwhile, extensive experimental stud- 

ies compared with seven traditional feature selection methods and four online streaming feature selection approaches 

show that our proposed algorithm can get better performance than traditional feature selection methods with the same 

number of features and state-of-the-art online streaming feature selection approaches in an online manner. 

This new adapted Neighborhood Rough Set method was first introduced in our conference paper [41] . In comparison with 

the preliminary version, we have improvements in the following aspects: (1) we have performed a more comprehensive 

survey of existing related works; (2) we have provided more detailed descriptions of the theory of Neighborhood Rough Set 

and our new method; and (3) we have conducted more experiments, discussions and analysis. 

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 gives a brief introduction to 

Neighborhood Rough Set Theory. Section 4 presents our new defined Neighborhood Rough Set relation and a new online 

streaming feature selection approach based on this relation. Section 5 reports experimental results and analyzes all experi- 

mental algorithms. Section 6 concludes the paper. 

2. Related work 

Feature Selection is an important technology for machine learning and data mining. There are many representative al- 

gorithms for traditional feature selection, such as ReliefF [22] , Fisher Score [6] , MI (Mutual Information) [27] , mRMR (min- 

imal Redundancy and Maximal Relevance) [19] , Laplacian Score [8] , LASSO (least absolute shrinkage and selection opera- 

tor) [26] and so on. Feature selection can have numerous benefits such as faster model training, reduced susceptibility to 

overfitting, offsetting the pernicious effects of the curse of dimensionality, and reducing storage, memory, and processing 

requirements during data analysis [14] . 

All aforementioned feature selection methods assume that all features in the feature space are available before learning. 

However, features may exist in a streaming format for some real-world applications [4,31] . Online feature selection with 
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streaming features has attracted much attention in recent years and played a critical role in dealing with high-dimensional 

and big data problems [5,20,30,33,37,40] . There are two major reasons for online streaming feature selection [5] : (1) The 

feature space is unknown or even infinite and (2) the feature space is known but feature streaming offers many advantages. 

More specifically, Perkins and Theiler [20] considered the problem of online feature selection and proposed the Grafting 

algorithm based on a stagewise gradient descent approach. Grafting treats feature selection as an integral part of learning 

a predictor within a regularized framework. A new arriving feature is added to the selected features if the improvement 

in the model accuracy is greater than a predefined threshold λ. Grafting needs the information of the global feature space 
to choose a good value for the important regularization parameter λ in advance, and it is hence weak in the handling of 

streaming features. 

Zhou et al. [40] proposed two algorithms of information-investing and alpha-investing, based on streamwise regression 

for online feature selection. Alpha-investing does not need a global model and it is one of the penalized likelihood ratio 

methods. However, these two algorithms require prior knowledge about the structure of the feature space to heuristically 

control the choice of candidate feature selection. 

Wu et al. [33] presented an online streaming feature selection framework with two algorithms called OSFS (Online 

Streaming Feature Selection) and fast-OSFS. OSFS contains two major steps, including online relevance analysis (discards 

irrelevant features) and online redundancy analysis (eliminates redundant features). Although these two algorithms can se- 

lect features with high relevancy and low redundancy, it uses a conditional independence test which needs a large number 

of training instances. This may lead to information missing during online feature selection on the datasets with high dimen- 

sionality and small samples. 

Yu et al. [37] proposed the SAOLA approach (a Scalable and Accurate Online feature selection Approach) for high dimen- 

sional data. SAOLA employs novel online pairwise comparison techniques and maintains a parsimonious model over time in 

an online manner. SAOLA addresses two challenges in big data applications: extremely high dimensionality and its highly 

scalable requirement of feature selection. Nevertheless, SAOLA needs to set the parameter α in advance which affects the 

dependence and independence test. 

Javidi and Eskandari [12] considered the problem of streamwise feature selection and proposed a method from the Rough 

Set perspective. The main motivation for this consideration is that Rough Set based data mining does not require any domain 

knowledge other than the given dataset. This new algorithm (SFS-RS) uses the significance analysis concepts in Rough Set 

Theory to control the unknown feature space. SFS-RS needn’t specify any parameters before learning. However, SFS-RS is a 

classical Rough Set based method which cannot handle numerical features directly. 

Eskandari and Javidi [5] proposed a Rough Set based method for online streaming feature selection, named OS-NRRSARA- 

SA. Unlike the classical Rough Set-based attribute reduction methods which only use the information contained in the posi- 

tive region, OS-NRRSARA-SA considers the boundary and positive regions. Meanwhile, OS-NRRSARA-SA uses a noise resistant 

dependency measure to search for reduces. By using Rough Set Theory, OS-NRRSARA-SA does not need to specify any pa- 

rameters before learning. However, like SFS-RS, OS-NRRSARA-SA cannot deal with numerical features directly. 

Wang et al. [29] considered online streaming feature selection from the Rough Set perspective and proposed an uncer- 

tainty measure framework to address this issue. By specifying the uncertainty measure with conditional information entropy 

(CIE), a new algorithm was proposed based on the framework, called CIE-OSFS. CIE-OSFS does not need prior knowledge to 

deliver credible results and is robust to the changing of streaming orders. Nevertheless, similar to other Rough Set based 

methods, CIE-OSFS cannot handle numerical features directly. 

Rahmaninia and Moradi [21] considered the challenges of high computational cost, the stability of the generated results 

and the size of the final feature subset in online streaming feature selection and proposed two feature selection methods 

called OSFSMI and OSFSMI-k. These two methods employ mutual information in a streaming manner to evaluate the rele- 

vancy and redundancy of features. However, OSFSMI and OSFSMI-k need to set the parameter β which controls redundancy 

penalty in advance. In order to choose an optimal value of this parameter, these new methods need domain knowledge 

before learning. 

Zhou et al. [42] proposed a new online streaming feature selection method for high-dimensional and class-imbalanced 

data, called K-OFSD. K-OFSD uses the dependency between condition features and decision classes for feature selection. 

In terms of Neighborhood Rough Set Theory, K-OFSD uses the information of K nearest neighbors to select relevant fea- 

tures which can get higher separability between the majority class and the minority class. K-OFSD was designed for class- 

imbalanced data and it needs to specify the parameter K in advance. 

Rough Set Theory has attracted widespread attention after it was proposed [17] . The classical Rough Set Theory was 

originally proposed to deal with categorical data. However, in real-world applications, there are many numerical features in 

the data sets. Thus, Neighborhood Rough Set which supports both continuous and discrete data was proposed to deal with 

this challenge [9–11,13,39] . 

More specifically, Hu et al. [9] proposed a feature selection method for numerical and categorical mixed attributes by 

generalizing Pawlak’s Rough Set model into δ Neighborhood Rough Set model and k -nearest-neighbor Rough Set model. The 

objects with numerical attributes are granulated with δ neighborhood relations or k -nearest-neighbor relations, while ob- 

jects with categorical features are granulated with equivalence relations. Paper [10] presented a Neighborhood Rough Set 

model to deal with the problem of heterogeneous feature subset selection. This neighborhood model is used to reduce nu- 

merical and categorical features by assigning different thresholds for different kinds of attributes. In paper [13] , hybridization 

of particle swarm optimization (PSO)-based Rough Set feature selection technique was proposed for achieving a minimal set 
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Fig. 1. δ Neighborhood Rough Set. 

Fig. 2. k -nearest Neighborhood Rough Set (k = 3). 

of relevant features from extracted features. The selected features are applied to the proposed novel Neighborhood Rough 

Set classifier (NRSC) method for classification of multi-class motor imagery. 

Nevertheless, all of these methods mentioned above are proposed for the traditional feature selection problem. Mean- 

while, all these Neighborhood Rough Set based feature selection algorithms need to specify some parameters before learn- 

ing. It is hence a challenge to select unified and optimal parameters before learning for different datasets. Motivated by this, 

we proposed a new neighborhood relation for online streaming feature selection and this new approach does not need to 

specify any parameters in advance. First, we give a brief introduction to the Neighborhood Rough Set Theory as follows. 

3. Neighborhood Rough Set 

Classical Rough Set is originally proposed to deal with categorical data [17,23] . However, in real-world applications, there 

are many integers-valued and real-valued data. Thus, Neighborhood Rough Set is used to replace the approximation based on 

the equivalence relation of the traditional Rough Set model with the neighborhood relation, which supports both continuous 

and discrete data sets [11,25,39] . In this section, we briefly review some basic concepts and notations of Neighborhood Rough 

Set as follows. 

DT = (U, A, V, h ) is called a decision table [43] , where U = { x 1 , x 2 , . . . , x n } is a nonempty finite set of n objects, A = C 
⋃ 
D, 

C is a set of condition attributes and D is a set of decision attributes, C 
⋂ 
D = ∅ . V = 

⋃ 

a ∈ A V a , V a is the domain of attribute 

a. h : U ×A → V is an information function such that h ( x, a ) ∈ V a for every x ∈ U, a ∈ A. h ( x i , a j ) denotes the value of object x i 
on the attribute a j . In this paper, h denotes the specific value of an object on a certain feature. 

There are two main types of neighborhood relations: (1) neighborhood relation with the fixed distance ( δ neighborhood), 

shown as Fig. 1 ; (2) neighborhood relation with the fixed number of neighbors ( k -nearest neighborhood), shown as Fig. 2 . 
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Definition 1. Given DT , a metric 1 is a distance function from R n ×R n → R , and 1( x, y ) denotes the distance between x and 

y . For ∀ x, y, z ∈ U , it satisfies: 

(1). 1( x, y ) ≥0; 1(x, y ) = 0 if and only if x = y ; 

(2). 1(x, y ) = 1(y, x ) ; 

(3). 1(x, z) ≤ 1(x, y ) + 1(y, z) ; 

Definition 2. Given DT , let B ⊆C be a subset of attributes, x ∈ U . The neighborhood δB ( x ) of an arbitrary object x on the 
feature subset B is defined as: 

δr B (x ) = { y | 1B (x, y ) ≤ r, y ∈ U} , (1) 

where 1B denotes the distance function calculating on subset B , and r is the distance radius. 

Definition 3. Given DT , considering object x and given a set of numerical attributes B to describe the object, we call the 

k -nearest neighbors of x in terms of a k -nearest neighborhood information granule, denoted as K B ( x ). 

K k B (x ) = { y | y ∈ Min k { 1(x, y ) } , y ∈ U, y 6 = x } , (2) 

where Min k { 1( x, y )} denotes the k nearest neighbors of x calculated on subset B . 

Suppose a data set S has N instances. For each object x in S , it has N − 1 neighbors. K -nearest neighborhood mainly 

considers the class information of k nearest neighbors. 

Like Pawlak’s Rough Set model, we give the lower and upper approximations of δ neighborhood and k -nearest neighbor- 

hood as follows. 

Definition 4. Given DT and their neighborhood relations R over U . For ∀ X ⊆U , two subsets of objects, called lower and upper 

approximations of X in terms of a δ neighborhood relation, are defined as 

R δX = { x i | δ(x i ) ⊆ X, x i ∈ U} (3) 

R δX = { x i | δ(x i ) ∩ X 6 = ∅ , x i ∈ U} (4) 

Definition 5. Given DT , an arbitrary subset X of the sample space U and a family of k -nearest neighbor information granules 

K ( x ), we define the lower and upper approximations in terms of k -nearest neighborhood relations as 

R K X = { x i | K(x i ) ⊆ X, x i ∈ U} (5) 

R K X = { x i | K(x i ) ∩ X 6 = ∅ , x i ∈ U} (6) 

The boundary region of X in the approximation space is formulated as 

BR (X ) = R X − R X (7) 

As shown in Fig. 1 , all the δ neighbor samples of x 1 have the same class label L 1 with mark “
∗” and the neighborhood 

samples of x 3 in a δ area are completely marked with “o” with another class label L 2 . Meanwhile, the samples in the 

neighborhood of x 2 come from classes L 1 and L 2 . We define the samples of x 2 are the boundary objects. Meanwhile, as 

shown in Fig 2 , all the k -nearest neighbor ( k = 3) samples of x 1 have the same class label L 1 and the neighborhood samples 

of x 3 have the same class label L 2 . The neighbors of x 2 come from classes L 1 and L 2 . In general, we need to find a feature 

subspace on which the boundary region is maintained as little as possible. 

The size of the boundary region reflects the roughness degree of X in the approximation space. Usually, we hope that 

the boundary region of the decision is as little as possible for decreasing uncertain in the decision procedure. The lower 

approximation is also called positive region, denoted as POS ( X ). 

Definition 6. Given DT, B ⊆C , the dependency degree of B to D is defined as the ratio of consistent objects: 

γB (D ) = 
CARD (P OS B (D )) 

CARD (U) 
(8) 

Thus, feature selection using Neighborhood Rough Set aims to select a subset B from the feature set C that gets the 

maximal dependency degree of B to D . 

For online streaming feature selection, features flow in one by one over time. In order to measure each feature’s impor- 

tance in the selected candidate subset, we need to define the significance of single feature to its feature set. The significance 

of a feature f to feature set B ( f ∈ B ) is defined as follows: 

Definition 7. Given DT , a condition attribute set B ( B ⊆C ) and a decision attribute set D , the significance of a feature f ( f ∈ B ) 

to B is defined as: 

σB (D, f ) = γB (D ) − γB \{ f } (D ) (9) 
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Fig. 3. Gap neighborhood. 

Both δ neighborhood relation and k -nearest neighborhood relation need to specify parameters δ and k before learning. 

It is hence a challenge to select unified and optimal parameters before learning for different data sets. Motivated by this, 

we propose a new neighborhood relation which automatically selects the number of neighbors for each target object by its 

surrounding instances distribution. This new neighborhood relation does not need to specify any parameters before learning. 

More details can be seen in Section 4 . 

4. Our new online streaming feature selection approach 

In this section, we will introduce our new online streaming feature selection approach in detail. We first give a formal 

definition of online streaming feature selection. Then we introduce our new neighborhood relation with adapted neighbors. 

Three evaluation criteria of “maximal-dependency, maximal-relevance, and maximal-significance” based on the dependency 

between condition features and decision classes will be used for selecting features with high correlation and low redun- 

dancy. In terms of the new neighborhood relation and three evaluation criteria, we will present a new online streaming 

feature selection algorithm subsequently. 

4.1. Definition of online streaming feature selection 

Let OSF S = (C, D, h ′ , t) denote an online streaming feature selection framework, where C is the condition attribute set, 

and D is the decision attribute set. Let C = [ x 1 , x 2 , . . . , x n ] 
T 

∈ R n ×d consist of n samples over a d -dimensional feature space 

F = [ f 1 , f 2 , . . . , f d ] 
T 

∈ R d . Let D = [ y 1 , y 2 , . . . , y n ] 
T 

∈ R n consist of n samples over the class label (decision feature space) L = 

{ l 1 , l 2 , . . . , l m } , where l i denotes the value of a class label. Given C and D , at each time stamp t , we get a new feature f t of 

C ∪ D without knowing the exact number of d in advance. The problem of online streaming feature selection is to derive a 

mapping function h ′ t : x i → L ( x i ∈ C ) at each time stamp t , which is as good as possible using a subset of features that have 

arrived so far. 

Unlike traditional feature selection methods, we do not know the feature space before learning. Although Rough Set 

based data mining does not require any domain knowledge, it is still a challenge to specify unified parameters δ for δ
neighborhood or k for k -nearest neighborhood before learning for all different types of data sets. Thus, we introduce a new 

neighborhood relation which does not need to specify any parameters before learning as follows. 

4.2. Our new neighborhood relations 

Definition 2 introduces the neighborhood relation with a fixed distance δ of the nearest neighbors to the target object, 

called δ neighborhood. Definition 3 presents the neighborhood relation with a fixed number of the nearest neighbors to the 

target object, called k -nearest neighborhood. However, for different datasets, the distribution of samples is asymmetrical. 

It is difficult to select a uniform δ for all types of data. Meanwhile, it is also a challenge for k -nearest neighborhood to 

select a uniform k for different types of datasets. When calculating the dependency value, it will be good to determine 

the number of neighbors for each target object by its surrounding instances distribution. Motivated by this, we define a 

new neighborhood relation which automatically selects the number of neighbors for each target object by its surrounding 

instances distribution as shown in Fig. 3 . 

Definition 8. Given OSFS , let N B ( x i ) denote all of the neighbors of x i sorted by the distance from the nearest to the farthest 

on feature subset B , 

N B (x i ) = < x 1 i , x 
2 
i , . . . , x 

j 
i 
, . . . , x n −1 

i > (10) 

where 1B (x i , x 
1 
i ) ≤ 1B (x i , x 

2 
i ) ≤ · · · ≤ 1B (x i , x 

n −1 
i 

) . 

From x 1 
i to x n −1 

i 
, assume it is evenly distributed. We divided 1B (x 

1 
i , x 

n −1 
i 

) into n − 1 parts P 1 , P 2 , . . . , P n −1 , where 

W idth P 1 = W idth P 2 = . . . = W idth P n −1 = p. Then, each part contains one sample. Certainly, it is always a non-uniform dis- 

tribution from x 1 
i to x 

n −1 
i 

. From x 1 
i to x 

n −1 
i 

, if the distance between two instances x k 
i 
and x k +1 

i 
is bigger than p , it is called a 
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Table 1 

An example dataset. 

x ∈ U f 1 f 2 f 3 f 4 d 

x 1 3 5.6 −66 3.05 −1 

x 2 5 6.9 95 4.84 1 

x 3 8 5.3 −28 5.89 1 

x 4 13 12.3 −35 6.14 1 

x 5 6 15.2 72 6.55 −1 

x 6 5 2.6 42 10.94 1 

x 7 9 6.8 −33 23.85 −1 

x 8 15 8.4 15 23.85 −1 

Gap between x k 
i 
and x k +1 

i 
, denoted as Gap(x k 

i 
, x k +1 

i 
) . Thus, we use the samples between x i and the first Gap as the nearest 

neighbors of x i . 

If there exist more than one neighbor with the same distance to x i , there will be a set of many permutations of N B ( x i ). 

However, this does not affect the final selected neighbors in terms of the Gap neighborhood relation. 

Theorem 1. Different permutations of N B ( x i ) with the same distance to x i do not affect the final selected neighbors in terms of 

the Gap neighborhood relation. 

Proof 1. Suppose N B (x i ) = < x 1 
i , x 

2 
i , . . . , x 

k 
i 
, x k +1 

i 
, . . . x k + m 

i 
, . . . , x n −1 

i 
>, where 1B (x i , x 

k 
i 
) = 1B (x i , x 

k +1 
i 

) = . . . = 1B (x i , x 
k + m 
i 

) . 

Then, there are m + 1 objects having the same distance to x i . Suppose the first Gap from x 1 
i to x 

n −1 
i 

is Gap(x j 
i 
, x 

j+1 
i 

) . Due 

to 1B (x 
k 
i 
, x k +1 

i 
) = 1B (x 

k +1 
i 

, x k +2 
i 

) = . . . = 1B (x 
k + m −1 
i 

, x k + m 
i 

) = 0 , there should be j + 1 < = k or j > = k + m . If j + 1 < = k, then 

{ x k 
i 
, x k +1 

i 
, . . . , x k + m 

i 
} will not be considered as the nearest neighbors in terms of Gap neighborhood relation. If j > = k + m, 

then all the objects of { x k 
i 
, x k +1 

i 
, . . . , x k + m 

i 
} will be considered as the nearest neighbors together. Thus, the objects with equal 

distance will be considered together. The order of objects with equal distance will not affect the set of the final considered 

neighbors. 

Based on this, we proposed a new neighborhood relation with adapted neighbors by using the Gap, denoted as GAP ( x ) 

as shown in Eq. (11) . 

Definition 9. Given OSFS and a feature subset B ( B ⊆C ), for target object x i , let N B (x i ) = < x 1 
i , x 

2 
i , . . . , x 

n −1 
i 

> denotes all the 

neighbors of x i from the nearest to the farthest on B . The width of Gap is p . The adapted neighborhood of arbitrary object 

x i ∈ U on B is defined as: 

GAP B (x i ) = { x | x ∈ { x 1 i , x 
2 
i , . . . , x 

k 
i }} , (11) 

where Gap(x m −1 
i 

, x m 
i 
) < p, and 2 ≤m ≤ k . 

More specifically, assume D max = 1(x i , x 
n −1 
i 

) denotes the maximum distance from x i to its neighbors and D min = 1(x i , x 
1 
i ) 

denotes the minimum distance in N B ( x i ). Thus, the average width of gaps for each elements in N B ( x i ) is G mean = 
D max −D min 

n −1 . 

We define the width of Gap as W Gap = 1 . 5 × G mean (1.5 is an empirical value). From x 1 
i to x 

n −1 
i 

, if Gap(x k 
i 
, x k +1 

i 
) is the first 

Gap, which means 1(x i , x 
k +1 
i 

) − 1(x i , x 
k 
i 
) ≥ W Gap and all the neighbors { x 

j 
i 
| 2 ≤ j ≤ k } have 1(x i , x 

j 
i 
) − 1(x i , x 

j−1 
i 

) < W Gap , 

we will consider { x 1 
i , x 

2 
i , . . . , x 

k 
i 
} as the adapted neighbors of x i . 

Table 1 shows an example dataset used to illustrate the definition of Gap neighborhood, where x 1 – x 8 are the samples 

with four condition features ( f 1 to f 4 ) and one decision features ( d ). The distance function is calculated with Standardized 

Euclidean distance (each coordinate difference between rows in data matrix X is scaled by dividing by the corresponding 

element of the standard deviation). 

Take object x 3 and feature set B = { f 1 , f 2 } as an example. First, we calculate Standardized Euclidean distances 
(the standard deviations of f 1 and f 2 are 4.1748 and 4.0576) between x 3 and x i ( i 6 = 3) on B namely: 1B (x 3 , x 1 ) = 
√ 

((8 − 3) / 4 . 1748) 2 + ((5 . 3 − 5 . 6) / 4 . 0576) 2 = 1 . 2 , 1B (x 3 , x 2 ) = 0 . 8197 , 1B (x 3 , x 4 ) = 2 . 1 , 1B (x 3 , x 5 ) = 2 . 4865 , 1B (x 3 , x 6 ) = 

0 . 9794 , 1B (x 3 , x 7 ) = 0 . 4405 , 1B (x 3 , x 8 ) = 1 . 8426 . All the neighbors of x 3 from the nearest to the farthest are denoted as 

N B (x 3 ) = < x 7 , x 2 , x 6 , x 1 , x 8 , x 4 , x 5 > . 

For Gap neighborhood, D max = 1B (x 3 , x 5 ) = 2 . 4865 , D min = 1B (x 3 , x 7 ) = 0 . 4405 , and G mean = 
D max −D min 

7 = 
2 . 4865 −0 . 4405 

7 = 

0 . 2923 . Then W Gap = 1 . 5 × G mean = 1 . 5 × 0 . 2923 = 0 . 4385 . From x 7 to x 5 , 1B (x 7 , x 2 ) = 0 . 3792 , 1B (x 2 , x 6 ) = 0 . 1597 , 

1B (x 6 , x 1 ) = 0 . 2206 , 1B (x 1 , x 8 ) = 0 . 6426 . Thus, the first GAP is Gap(x 1 , x 8 ) = 0 . 6426 > 0 . 4385 , and the Gap neighborhood 

of x 3 is GAP B (x 3 ) = { x 7 , x 2 , x 6 , x 1 } . 
Unlike traditional feature selection methods, online feature selection with feature streams gets features one by one over 

time. At the jth time stamp, we must decide the new arriving feature f j whether to maintain or discard. Online stream- 

ing feature selection mainly aims to select features with high correlation and low redundancy. Thus, we introduce three 

evaluation criteria as follows. 
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4.3. Evaluation criteria of maximal-dependency, maximal-relevance and maximal-significance 

For high-dimensional data sets, there are always many irrelevant and redundant features. In order to remove these fea- 

tures in the process of feature selection, we introduce three evaluation criteria for Rough Set based approaches as follows 

[15,19] . 

4.3.1. Maximal-dependency 

Let C denote the set of m condition features of a given data set. The task of feature selection is to find a feature subset 

B ⊆C with d features ( d < m ) which have the largest dependency D on the decision attributes set D and the minimal value 

of d . 

Max { D } & Min { d} s.t. D = γB (D ) , (12) 

where D = γB (D ) represents the dependency between the feature subset B and the decision attributes set D as shown in 

Eq. (8) . 

Theoretically, the maximal-dependency is the best evaluation criterion for feature selection with Neighborhood Rough 

Set. However, it is difficult to generate the resultant equivalence classes by using the maximal-dependency in the high- 

dimensional space. Reasons are analyzed below. First, the number of samples is often insufficient. Second, the generation 

of resultant equivalence classes is usually an ill-posed problem [19] . Meanwhile, the slow computational speed is another 

drawback of maximal-dependency. In addition, it is not suitable for online streaming feature selection because we just get 

one feature at each time stamp and we do not know the whole feature space in advance. 

4.3.2. Maximal-relevance 

Maximal-relevance is to search feature with approximates D using Eq. (12) with the mean value of all dependency values 

between individual feature f i and target class label D : 

Max { R } s.t. R = 
1 

| S| 

∑ 

f i ∈ S 

γ f i (D ) , (13) 

where S is the selected feature subset. 

The dependency among features which have been selected according to maximal-relevance could have rich redundancy. 

For instance, if two features f i and f j highly depend on each other, and both of them are in the candidate feature subset. 

The respective class discriminative power would not change a lot after we remove one of them. Thus, “maximal-relevance”

can select features with high dependency to the condition classes, but it can not remove redundancy in the selected feature 

subset. 

4.3.3. Maximal-significance 

The significance of a feature f to feature set S ( f ∈ S ) is defined as follows: 

Definition 10. Given a condition attribute set S and a decision attribute set D , the significance of a feature f ( f ∈ S ) to S is 

defined as: 

σS (D, f ) = γS (D ) − γS\{ f } (D ) (14) 

With the significance of the feature to its feature set, we can measure each feature’s importance in the selected candidate 

subset. The maximal-significance condition can select mutually exclusive features as follows: 

Max { S } s.t. S = 
1 

| S| 

∑ 

f i ∈ S 

{ σS (D, f i ) } . (15) 

In online streaming feature selection, we can not test all combinations of candidate features to maximize the depen- 

dency of the selected feature set as Eq. (12 ). Thus, we use the “maximal-relevance” criterion to select relevant features and 

discard irrelevant features at first. If a new arriving feature can increase the dependency of the selected subset, it will be 

selected by the “maximal-dependency” criterion. Otherwise, if the dependency of adding the new arriving feature equals 

to the currently selected subset, we first combine the new arriving feature and currently selected subset and then use the 

“maximal-significance” criterion to remove non-significant features. More details are given in Section 4.4 . 

4.4. Our new online streaming feature selection algorithm 

GAP B ( x ) use different numbers of neighbors for dependency calculation which makes it competent to handle different 

kind of data. Given OSFS, S ⊆C, S R denotes the set of neighbors in terms of neighborhood relation R on the feature set S . 

The dependency calculation method using this new neighborhood relation denoted as Dep-Adapted is given in Algorithm 1 . 

However, in terms of Gap neighborhood relation, our new algorithm deals with data sets that contain only numerical values. 

For categorical features, it can be handled by Classical Rough Set relation. 
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Algorithm 1 Dep–Adapted. 

Require: 

S: The target feature set; 

R : Neighborhood relation, 

Ensure: 

D S : Dependency on feature set S

1: S card : The number of positive samples on S, initialized to 0; 

2: || S|| : The number of instances in S; 
3: FOREACH x i in S

4: Calculate the distance between x i and its neighbors; 

5: Sort all the neighbors of x i from the nearest to the farthest; 

6: Find the neighbors of x i in term of R as S R (x i ) ; 

7: Calculate the card value of x i as S R (x i ) card ; 

8: S card = S card + S R (x i ) card ; 

9: END 

10: D S = S card / || S|| ; 
11: return D S ; 

In Algorithm 1 , we calculate the card value of each instance x i and get the sum for the final dependency degree. The 

card value ranges from 0 to 1, denoted as the consistency of x i ’s class attribute with its neighbors’ class attributes. For each 

object x i , we calculate the distance between x i and its neighbors. The time complexity of this step is O (|| S ||). In order to 

find the neighbors of x i in terms of neighborhood relation R , we need to sort all the neighbors of x i by distance. The time 

complexity of quicksort function is O ( n ∗logn ). Thus, the time complexity of Dep-Adapted is O (|| S || 2 ∗log || S ||). 

Based on the dependency calculating method, we introduce our new online streaming feature selection algorithm by 

using the “maximal-dependency, maximal-relevance and maximal-significance” evaluation criteria mentioned above, called 

“OFS-A3M” as shown in Algorithm 2 . The main goal of this online feature selection algorithm is to maximize D S with the 

Algorithm 2 OFS-A3M. 

Require: 

C: the condition feature set; 

D : the decision classes; 

Ensure: 

S: the selected feature set 

1: S: the selected feature set, initialized to {}; 

2: D S : the dependency of S to D , initialized to 0; 

3: Mean D S : the mean dependency of features in S, initialized to 0; 

4: Repeat 

5: Get a new feature f i of C at time stamp t i as C f i ; 

6: Calculate the dependency of C f i as γ f i 
= Dep − Adapted (C f i , GAP ) ; 

7: IF γ f i 
< Mean D S 

8: discard feature f i ; and go to Step 23; 

9: END IF 

10: IF γS∪ f i > D S 

11: S = S ∪ f i ; 

12: D S = γS , Mean D S = 
1 
| S| 

∑ 

f i ∈ S 
γ f i 

(D ) ; 

13: ELSE IF γS∪ f i == D S 

14: S = S ∪ f i ; 

15: random the feature order in S; 

16: FOREACH feature f ′ in S

17: calculate f ′ ’s significance as σS (D, f ′ ) ; 

18: IF σS (Y, f ′ ) == 0 

19: S = S\{ f ′ } , Mean D S = 
1 
| S| 

∑ 

f i ∈ S 
γ f i 

(D ) ; 

20: END IF 

21: END FOR 

22: END IF 

23: Until no more features are available; 

24: return S; 
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feature streams. 

More specifically, if a new feature f i arrives at time stamp t i , Step 6 calculates the dependency of f i using the dependency 

calculation method Dep-Adapted . The dependency function Dep-Adapted can be calculated on either only one feature or 

a feature set. All the following dependency computation calls from step 6 to step 18 use Algorithm 1 ( Dep-Adapted ) as 

their calculating method for dependency degree. Step 7 compares the dependency of f i with the mean dependency of the 

selected feature set S . If γ f i 
is smaller than Mean D S and we add f i into S , the Mean D S will decrease. Thus, with the “maximal- 

relevance” constraint, f i is discarded when its dependency is smaller than Mean D S . 

If f i satisfies the “maximal-relevance” constraint, step 10 compares the dependency of the current feature set S with the 

dependency of the feature set S ∪ f i . If the dependency of S ∪ f i is bigger than D S , which means adding new feature f i will 

increase the dependency of the selected feature set, then we add f i into S with the “maximal-dependency” constraint. 

If the dependency of S ∪ f i is equal to D S , we will use the “maximal-significance” constraint for the analysis of feature 

redundancy. For each feature in S ∪ f i , we randomly select a feature from the candidate feature set and calculate its signifi- 

cance according to Eq. (15 ). We will discard features whose significance equals to 0. By the “maximal-relevance”, “maximal- 

dependency” and “maximal-significance” constraints, we can select features with high correlation, high dependency, and 

low redundancy. 

Let us use the data in Table 1 to illustrate our algorithm for online streaming feature selection. First of all, we initialize 

S = {} , D S = 0 and Mean D S = 0 . 

At time stamp t 1 , we get the sample data of f 1 as X f 1 = [3 , 5 , 8 , 13 , 6 , 5 , 9 , 15] T . Then, we calculate the dependency of X f 1 
as γ f 1 

= 0 . 2625 . For γS∪ f 1 = γ f 1 
> D S = 0 , we add f 1 into S , update D S = 0 . 2625 and Mean D S = 0 . 2625 . 

At time stamp t 2 , we get the sample data of f 2 as X f 2 . We calculate the dependency of f 2 as γ f 2 
= 0 . 33542 . For 

γ f 2 
= 0 . 33542 > Mean D S = 0 . 2625 and γS∪ f 2 = γ f 1 ∪ f 2 

= 0 . 32292 > D S = 0 . 2625 , we add f 2 into S and update D S = 0 . 32292 

and Mean D S = 0 . 29896 . 

For feature f 3 at time stamp t 3 , γ f 3 
= 0 . 29464 < Mean D S = 0 . 29896 . Thus, we discard f 3 and continue to process the next 

arriving feature. 

At time stamp t 4 , we get the new arriving feature f 4 . For γ f 4 
= 0 . 6 > Mean D S = 0 . 29896 and γS∪ f 4 = γ f 1 ∪ f 2 ∪ f 4 

= 0 . 55357 > 

D S = 0 . 32292 , we add f 4 into S and update the value of D S and Mean D S . 

After time stamp t 4 , there are no more features available. Thus, the final selected feature subset is { f 1 , f 2 , f 4 }. 

4.5. Time complexity of OFS-A3M 

The time complexity of OFS-A3M mainly depends on the dependency function Dep-Adapted . 

Suppose the data set is DS , the number of instances in DS is N and the number of features in DS is F . According to 

Section 4.4 , the time complexity of Dep-Adapted is O ( N 2 logN ). At time stamp t i , a new feature f i is present to the OFS- 

A3M algorithm. Steps 6–8 calculate the dependency of f i and compare it with Mean D S (the mean dependency value of each 

feature in selected feature set S ). The time complexity is O ( N 2 logN ). If the dependency of f i is smaller than Mean D S , f i will be 

discarded. Otherwise, we calculate the dependency of S ∪ f i and compare it with D S (the dependency of currently selected 

feature set). This time complexity is also O ( N 2 logN ). If the dependency of S ∪ f i is bigger than D S , we add f i into S and go 

on to the next feature. If the dependency of S ∪ f i is smaller than D S , f i will be discarded. Only if the dependency of S ∪ f i is 

equal to D S , we will calculate each features’ significance and remove the redundant features from S . The time complexity of 

this phase is O (| S | ×N 2 logN ). 

Thus, the time complexity of OFS-A3M in the worst case is O ( F 2 ×N 2 logN ). For real-world datasets, it is impossible to 

choose all the features. Therefore, the time complexity will be much smaller than O ( F 2 ×N 2 logN ) for real-world applications. 

5. Experiment results 

5.1. Experiment setup 

In this section, we apply the proposed online feature selection algorithm on fifteen data sets, including three UCI datasets 

(WDBC, HILL VALLEY with noise, HILL VALLEY without noise), eleven DNA microarray datasets (PROSTATE-std, COLON, 

LYMPHOMA-std, DLBCL, LUNG CANCER-std, GLIOMA, SRBCT-std, LUNG2, LEUKEMIA-std, MLL, CAR) [35,38] and one NIPS 

2003 dataset (ARCENE) [33] as shown in Table 2 . 

In our experiments, we use two basic classifiers, KNN(K = 1) and SVM in Matlab R2015b to evaluate a selected feature 

subset. We perform 10-fold cross-validation on each data set. We use 9/10 data samples for training and the rest 1/10 

data for testing. All competing algorithms use the same training and testing data for each fold. All experimental results are 

conducted on a PC with Intel(R) i5-3470S, 2.9 GHz CPU, and 8 GB memory. 

To validate whether OFS-A3M and its rivals have a significant difference in prediction accuracy, number of selected fea- 

tures and running time, we conduct the Friedman test at a 95% significance level, under the null-hypothesis. The perfor- 

mance of OFS-A3M and that of its rivals has no significant difference if the null-hypothesis is accepted. If the null-hypothesis 

at the Friedman test is rejected, we proceed with the Nemenyi test [3] as a post-hoc test. With the Nemenyi test, the perfor- 
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Table 2 

Experimental data sets. 

Data set Instances Features Classes 

WDBC 569 30 2 

HILL 606 100 2 

HILL(noise) 606 100 2 

COLON 62 20 0 0 2 

SRBCT 63 2308 4 

LUNG2 203 3312 5 

LYMPHOMA 62 4026 3 

GLIOMA 50 4433 4 

MLL 72 5848 3 

PROSTATE 102 6033 2 

DLBCL 77 6285 2 

LEU 72 7129 2 

CAR 174 9182 11 

ARCENE 200 10,0 0 0 2 

LUNG 181 12,533 2 

Table 3 

Predictive accuracy of gap neighborhood vs. δ neighborhood (KNN). 

Data set Gap r = 0.05 r = 0.1 r = 0.15 r = 0.2 r = 0.25 r = 0.3 r = 0.35 r = 0.4 r = 0.45 r = 0.5 

WDBC 0.9332 0.9139 0.9402 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 

HILL 0.614 0.6091 0.6248 0.6339 0.638 0.6281 0.6331 0.614 0.6107 0.5901 0.6025 

HILL(noise) 0.5826 0.5479 0.5529 0.5612 0.5686 0.5298 0.5223 0.5314 0.5149 0.5116 0.5298 

COLON 0.75 0.5667 0.6667 0.8 0.8 0.8167 0.7 0.7333 0.7333 0.6667 0.7833 

SRBCT 0.9667 0.2667 0.4833 0.7667 0.8 0.7667 0.8333 0.85 0.8667 0.8833 0.8333 

LUNG2 0.94 0.8 0.83 0.85 0.83 0.86 0.865 0.87 0.895 0.865 0.865 

LYM 0.9333 0.7833 0.95 0.9333 0.9333 0.9667 0.9667 0.9667 0.9667 0.9667 0.9667 

GLIOMA 0.68 0.48 0.44 0.42 0.56 0.52 0.48 0.62 0.5 0.56 0.52 

MLL 0.9714 0.3571 0.3714 0.4 0.3857 0.3714 0.4429 0.4286 0.4143 0.4429 0.4429 

PRO 0.88 0.83 0.9 0.89 0.9 0.84 0.88 0.87 0.91 0.89 0.86 

DLBCL 0.9 0.6725 0.7675 0.705 0.735 0.725 0.755 0.83 0.8 0.83 0.8125 

LEU 0.9143 0.9 0.9 0.9143 0.8857 0.9571 0.9429 0.9571 0.9571 0.9 0.9 

CAR 0.7588 0.3235 0.3824 0.3588 0.3824 0.4059 0.4235 0.4 0.3941 0.4059 0.3824 

ARCENE 0.81 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 

LUNG 0.9611 0.9556 0.9611 0.9722 0.9833 0.9889 0.9722 0.9889 0.9778 0.9722 0.9778 

AVERAGE 0.8396 0.6310 0.6820 0.7071 0.7202 0.7185 0.7212 0.7374 0.7295 0.7257 0.7252 

RANKS 4.0 9.8333 7.6333 6.6 5.7333 5.5667 5.5333 4.4333 5.0333 5.7 5.9333 

mance of two methods is significantly different if the corresponding average rankings differ by at least the critical difference 

(how to calculate the critical difference, please see [3] for more details). 

5.2. Gap neighborhood vs. δ neighborhood 

In this section, we compare our new non-parametric neighborhood relation with δ neighborhood relation. For the sake 

of fairness, both neighborhood relations use OFS-A3M as the algorithm framework. 

For δ neighborhood, we use δ = r × D max and run the experiments varying with values of r from 0.05 to 0.5 with step 

0.05. Tables 3 and 4 show the experimental results of our new neighborhood relation competing with δ neighborhood on 

these data sets. The p -values of Friedman test on KNN, SVM are 1.0820e −04 and 9.2512e −07 respectively. Table 5 shows 

the running time of different algorithms on these data sets and the p -value is 7.1537e-36. Table 6 shows the mean number 

of selected features on these data sets and the p -value is 1.4835e-20. Thus, there is a significant difference among these 

eleven compared algorithms on predictive accuracy, running time and number of selected features respectively. According 

to the Nemenyi test, the value of CD(critical difference) is 3.8963. 

From Tables 3 –6 , we have the following observations: 

• According to the average ranks and the value of critical difference, there is no significant difference between Gap neigh- 

borhood and δ neighborhood with KNN classifier except for r = 0 . 05 . Meanwhile, there is no significant difference with 

SVM classifier except for r = 0 . 05 and 0.1. 

• On some data sets, such as WDBC, LYMPHOMA, and LEU, δ neighborhood gets the highest predictive accuracy with differ- 

ent r values. This indicates that δ neighborhood can perform very well with a proper r . However, on data sets GLIOMA, 

CAR and ARCENE, all r values of δ neighborhood get a very low predictive accuracy of around 0.4. This demonstrates 

that δ neighborhood cannot handle some types of data sets with imbalanced data distribution. Thus, Gap neighborhood 

is superior to δ neighborhood and can handle different types of data well. 
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Table 4 

Predictive accuracy of gap neighborhood vs. δ neighborhood (SVM). 

Data set Gap r = 0.05 r = 0.1 r = 0.15 r = 0.2 r = 0.25 r = 0.3 r = 0.35 r = 0.4 r = 0.45 r = 0.5 

WDBC 0.949 0.9438 0.9508 0.956 0.956 0.9543 0.9543 0.9543 0.9542 0.9543 0.9525 

HILL 0.5298 0.5289 0.5529 0.5628 0.5678 0.5669 0.5744 0.5702 0.557 0.5587 0.5603 

HILL(noise) 0.5504 0.514 0.5256 0.5207 0.5421 0.5339 0.5281 0.5223 0.5215 0.5182 0.5397 

COLON 0.8333 0.65 0.7333 0.7833 0.8667 0.8167 0.7833 0.8167 0.8167 0.8333 0.8167 

SRBCT 0.9667 0.4333 0.5667 0.75 0.7333 0.8 0.7833 0.9 0.9 0.9167 0.8 

LUNG2 0.915 0.875 0.875 0.875 0.885 0.88 0.87 0.89 0.88 0.89 0.89 

LYMPHOMA 0.9667 0.7667 0.9 0.9667 0.95 0.9667 0.9667 0.9333 0.9333 0.95 0.9333 

GLIOMA 0.68 0.32 0.32 0.32 0.34 0.44 0.38 0.54 0.38 0.4 0.4 

MLL 0.9571 0.3857 0.3714 0.4 0.3714 0.3714 0.4 0.4143 0.4 0.4143 0.4143 

PROSTATE 0.91 0.88 0.92 0.88 0.88 0.88 0.88 0.89 0.87 0.92 0.9 

DLBCL 0.855 0.7175 0.7375 0.73 0.7675 0.7675 0.7925 0.78 0.7925 0.8175 0.78 

LEU 0.9429 0.9429 0.9143 0.9286 0.9286 0.9429 0.9571 0.9571 0.9571 0.9286 0.9286 

CAR 0.8294 0.3529 0.3588 0.3765 0.3824 0.3765 0.3882 0.4118 0.3941 0.3529 0.4059 

ARCENE 0.815 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 

LUNG 0.9833 0.9778 0.9833 0.9889 0.9778 0.9944 0.9833 0.9833 0.9778 0.9833 0.9778 

AVERAGE 0.84557 0.6565 0.6846 0.7065 0.7139 0.7234 0.7200 0.7415 0.7262 0.7331 0.7239 

RANKS 3.0667 9.5667 8.3333 6.8 6.0667 5.4 5.4667 4.3 6.3667 5.0667 5.5667 

Table 5 

Running time of gap neighborhood vs. δ neighborhood (second). 

Data set Gap r = 0.05 r = 0.1 r = 0.15 r = 0.2 r = 0.25 r = 0.3 r = 0.35 r = 0.4 r = 0.45 r = 0.5 

WDBC 0.6984 0.4796 0.375 0.317 0.3266 0.3369 0.3434 0.3506 0.3586 0.3638 0.37 

HILL 10.5129 4.2196 4.7587 5.3206 5.5765 5.8174 5.7853 5.5508 5.3789 5.4996 5.6071 

HILL(noise) 10.361 3.9377 4.1746 4.2302 4.5198 4.5029 4.4465 4.4252 4.5575 4.5194 4.97 

COLON 0.9768 0.9136 0.9559 0.9805 1.0051 1.0264 1.036 1.0451 1.054 1.0697 1.0881 

SRBCT 1.093 1.0129 1.0448 1.0641 1.0794 1.0975 1.11 1.1199 1.128 1.141 1.1558 

LUNG2 9.004 5.1424 5.3318 5.4855 5.6489 5.7491 5.9228 6.0483 6.0518 6.2897 6.3158 

LYMPHOMA 2.1402 1.7966 1.8678 1.9056 1.9256 1.9501 1.9758 1.9939 2.0037 2.0278 2.0707 

GLIOMA 1.5983 1.596 1.6674 1.6983 1.714 1.7277 1.7435 1.7546 1.768 1.7753 1.7871 

MLL 3.1706 2.9509 3.0417 3.0786 3.1082 3.1421 3.1596 3.1856 3.2039 3.2149 3.2412 

PROSTATE 5.1647 4.2495 4.4261 4.5053 4.6069 4.6773 4.71 4.7839 4.8182 4.8525 4.8881 

DLBCL 4.4067 3.7912 3.9089 3.987 4.0353 4.0775 4.1226 4.1676 4.2121 4.2445 4.2663 

LEU 4.2779 3.5843 3.7307 3.817 3.8459 3.8888 3.9255 3.9811 4.0249 4.0516 4.0881 

CAR 17.8033 12.4166 12.7365 12.9179 13.0807 13.2331 13.3824 13.5159 13.6885 13.7538 13.8967 

ARCENE 23.0345 15.4814 15.8433 16.0419 16.226 16.3903 16.5529 16.683 16.7851 16.8921 16.9897 

LUNG 29.3758 17.4496 18.0579 18.4618 18.8473 19.1299 19.3466 19.6109 19.7916 19.9248 20.0877 

AVERAGE 8.2412 5.2681 5.4614 5.5874 5.7030 5.7831 5.8375 5.8810 5.9216 5.9747 6.0548 

RANKS 9.2 1.6 2.5333 3.0 4.4667 5.4667 6.2 6.8667 7.9333 8.7333 10.0 

• On running time, there is a significant difference between Gap neighborhood and δ neighborhood when r = 

0 . 05 , 0 . 1 , 0 . 15 , 0 . 2 and there is no significant difference when r = 0 . 25 , 0 . 3 , 0 . 35 , 0 . 4 , 0 . 45 , 0 . 5 . δ neighborhood with 

r = 0 . 05 is the fastest. r = 0 . 05 is the smallest ratio of the radius and it considers fewer neighbors than other r val- 

ues which makes it run faster. For Gap neighborhood, it sorts all the neighbors from the nearest to farthest. Meanwhile, 

δ neighborhood just considers the neighbors whose distance are less than a fixed radius. Thus, Gap neighborhood is a 

little slower than δ neighborhood. 

• On the number of selected features, there is a significant difference between Gap neighborhood and δ neighborhood 

when r = 0 . 05 , 0 . 1 , 0 . 15 . δ neighborhood with r = 0 . 05 selects the smallest mean number of features. On the whole, δ
neighborhood selects more features with the increase of the r values. On data set ARCENE, all the different r values of 

δ neighborhood just select one feature. This indicates that for some data sets, δ neighborhood cannot specify any good 

parameters. 

In sum, Gap neighborhood is superior to δ neighborhood on predictive accuracy and inferior to it on running time. 

Meanwhile, for δ neighborhood, it is difficult to select a uniform parameter for all different types of data sets. 

5.3. Gap neighborhood vs. k-nearest neighborhood 

In this section, we compare our new non-parametric neighborhood relation with k -nearest neighborhood relation. For 

the sake of fairness, both neighborhood relations use OFS −A3M as the algorithm framework. 

For k -nearest neighborhood, we run the experiments varying with values of k from 1 to 10. Tables 7 and 8 show the 

experimental results of our new neighborhood relation competing with the k -nearest neighborhood on these data sets. The 

p -values of Friedman test on KNN and SVM are 0.0223 and 0.2319 respectively. Tables 9 and 10 show the running time and 

mean number of selected features on these data sets. The p -values are 9.9735e-07 and 1.5644e-19 respectively. Thus, there 
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Table 6 

Gap neighborhood vs. δ neighborhood (the mean number of selected features). 

Data set Gap r = 0.05 r = 0.1 r = 0.15 r = 0.2 r = 0.25 r = 0.3 r = 0.35 r = 0.4 r = 0.45 r = 0.5 

WDBC 5.5 3.4 5.6 7.4 7.4 7.3 7.3 7.3 7.5 7.3 7.4 

HILL 7.2 9.6 18.9 29.2 34 34.5 34.1 31.5 26.5 27.9 30.5 

HILL(noise) 5.4 4.8 7.3 7.1 13.3 11.3 9.2 8.1 10.8 9.3 19.1 

COLON 17.2 2 2.5 3.3 3.5 3.3 4.1 4.3 4.1 4.4 4.7 

SRBCT 8.2 2 1.6 2.8 3.4 3.4 3.9 3.9 4 4.4 4.4 

LUNG2 42.6 3 2.9 3.5 3.8 4.1 4.2 4.6 4.8 4.8 5.4 

LYMPHOMA 4.4 1.7 2.1 2 2.3 2.1 2.8 2.5 2.7 2.2 2.5 

GLIOMA 21.4 1.7 1.7 2 2.2 2.2 2.2 2.5 2.6 2.7 2.9 

MLL 7.1 1.2 1.4 1.4 1.4 1.5 1.4 1.5 1.5 1.6 1.7 

PROSTATE 24.6 2.2 2.8 3 3.1 3.8 4 4 4 4.7 4.5 

DLBCL 22.2 2 2.1 2.5 2.8 2.9 3.1 3.7 3.9 4 3.4 

LEU 24.5 2 2.2 2.6 2.6 2.8 2.7 2.8 2.5 3.2 3.2 

CAR 41.6 2.2 2.3 2.8 2.8 3.3 3.4 3.6 3.9 4.1 4.3 

ARCENE 33.2 1 1 1 1 1 1 1 1 1 1 

LUNG 10.2 2 2.3 2.5 2.6 2.8 2.5 2.9 2.9 2.9 3.3 

AVERAGE 18.3 2.7 3.7 4.8 5.7 5.7 5.7 5.6 5.5 5.6 6.5 

RANKS 9.1333 1.5333 2.5333 3.9333 5.5 5.8667 6.2 6.9667 7.3667 7.9667 9.0 

Table 7 

Predictive accuracy of gap neighborhood vs. k -nearest neighborhood (KNN). 

Data set Gap k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 

WDBC 0.9474 0.9473 0.9386 0.9474 0.9368 0.9368 0.9351 0.9403 0.9421 0.9421 0.9403 

HILL 0.6107 0.5876 0.6339 0.6372 0.6579 0.6562 0.6694 0.6496 0.6455 0.6438 0.624 

HILL(noise) 0.5496 0.576 0.5769 0.5694 0.5537 0.5636 0.5496 0.5182 0.5322 0.5446 0.557 

COLON 0.75 0.7167 0.7667 0.7667 0.8167 0.8167 0.8 0.7833 0.8 0.8 0.8167 

SRBCT 1 0.85 0.85 0.9 0.8833 0.8833 0.8833 0.8833 0.9167 1 1 

LUNG2 0.9 0.875 0.9 0.905 0.925 0.92 0.935 0.925 0.925 0.92 0.925 

LYMPHOMA 0.9333 0.95 0.85 0.95 0.9833 0.8833 0.9333 0.9333 0.9167 0.9333 0.9333 

GLIOMA 0.74 0.6 0.68 0.7 0.6 0.68 0.72 0.66 0.84 0.68 0.78 

MLL 0.9429 0.8571 0.9286 0.9429 0.9286 0.9286 0.9571 0.9714 0.9429 0.9429 0.9714 

PROSTATE 0.84 0.83 0.87 0.86 0.89 0.88 0.88 0.91 0.92 0.9 0.9 

DLBCL 0.8875 0.7625 0.875 0.85 0.8375 0.9 0.8625 0.875 0.8875 0.9125 0.8875 

LEU 0.8857 0.8714 0.8571 0.9143 0.9286 0.9429 0.9429 0.9286 0.9286 0.9429 0.8857 

CAR 0.7471 0.7588 0.8176 0.8412 0.8529 0.8412 0.8176 0.8353 0.8294 0.8176 0.8118 

ARCENE 0.75 0.805 0.835 0.83 0.83 0.785 0.825 0.83 0.835 0.815 0.85 

LUNG 0.9889 0.9833 0.9833 0.9722 0.9833 0.9889 0.9833 0.9722 0.9889 0.9944 0.9889 

AVERAGE 0.8315 0.7980 0.8241 0.8390 0.8405 0.8404 0.8462 0.8410 0.8567 0.8526 0.8581 

RANKS 6.8667 8.7333 7.6667 5.9333 5.6333 5.6667 5.60 0 0 5.9333 4.5667 4.9333 4.4667 

is a significant difference among these eleven compared algorithms on predictive accuracy(KNN), running time and number 

of selected features respectively. Meanwhile, there is no significant difference on predictive accuracy with SVM. According 

to the Nemenyi test, the value of CD(critical difference) is 3.8963. 

From Tables 7–10 , we have the following observations: 

• According to the average ranks and the value of critical difference, there is no significant difference between Gap neigh- 

borhood and k -nearest neighborhood with both KNN and SVM classifiers for all different k values. 

• On some data sets, such as GLIOMA, SRBCT, and ARCENE, the k -nearest neighborhood can get the highest predictive 

accuracy with a proper k . This indicates that k -nearest neighborhood can perform very well with a proper parameter k . 

However, the k value which can get the highest performance for one data set may be not good for another data set. This 

demonstrates that it is not easy to select a uniform parameter k for all types of data sets. 

• On running time, there is a significant difference between Gap neighborhood and the k -nearest neighborhood except for 

k = 8 . In general, the k -nearest neighborhood is faster than Gap neighborhood. The main reason for this is Gap neigh- 

borhood sort all the neighbors from nearest to farthest and check an uncertain number of neighbors while k -nearest 

neighborhood checks a fixed number of neighbors. 

• On the number of selected features, there is no significant difference between Gap neighborhood and k -nearest neighbor- 

hood, except for k = 1 . K -nearest neighborhood with k = 1 selects the smallest mean number of features. On the whole, 

k -nearest neighborhood selects more features with the increase of the k values. 

In sum, Gap neighborhood is comparable to the k -nearest neighborhood with different k values on predictive accuracy 

and a little slower on running time. However, it is still a challenge for k -nearest to specify a uniform parameter k for all 

datasets. Thus, it is an outstanding advantage for Gap neighborhood which does not need to specify any parameters in 

advance. 
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Table 8 

Predictive accuracy of gap neighborhood vs. k -nearest neighborhood (SVM). 

Data set Gap k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 

WDBC 0.9596 0.9596 0.9543 0.9613 0.9579 0.9578 0.9596 0.9561 0.9561 0.9613 0.9578 

HILL 0.5314 0.5281 0.5421 0.5554 0.5537 0.5603 0.557 0.5579 0.5521 0.5504 0.5438 

HILL(noise) 0.514 0.5298 0.5223 0.5248 0.5099 0.5091 0.5091 0.5074 0.5058 0.4942 0.486 

COLON 0.8 0.7667 0.8 0.7667 0.7833 0.7167 0.8 0.7667 0.8667 0.75 0.7333 

SRBCT 0.9833 0.85 0.8667 0.8833 0.8667 0.8667 0.8667 0.85 0.9 0.9667 1 

LUNG2 0.92 0.91 0.89 0.91 0.94 0.935 0.92 0.89 0.9 0.91 0.935 

LYMPHOMA 0.9333 0.9 0.8333 0.9667 0.9833 0.9333 0.9167 0.9333 0.9333 0.9167 0.9333 

GLIOMA 0.72 0.58 0.74 0.7 0.72 0.68 0.78 0.6 0.72 0.66 0.7 

MLL 0.9286 0.8857 0.9143 0.9286 0.9429 0.9286 0.9143 0.9286 0.9143 0.9429 0.9714 

PROSTATE 0.82 0.86 0.86 0.88 0.88 0.87 0.85 0.87 0.89 0.91 0.87 

DLBCL 0.875 0.8375 0.9125 0.8875 0.8625 0.8 0.9 0.8875 0.9 0.925 0.9125 

LEU 0.8714 0.9286 0.8857 0.9286 0.9143 0.9286 0.9714 0.9429 0.9286 0.9714 0.9 

CAR 0.7706 0.7647 0.8294 0.8176 0.8118 0.8588 0.8412 0.8412 0.8471 0.8294 0.8529 

ARCENE 0.75 0.75 0.78 0.76 0.795 0.78 0.785 0.83 0.79 0.8 0.815 

LUNG 0.9889 0.9889 0.9778 0.9722 0.9889 0.9833 0.9889 0.9778 0.9944 0.9944 0.9944 

AVERAGE 0.8244 0.8026 0.8205 0.8295 0.8340 0.8205 0.8373 0.8226 0.8398 0.8388 0.8403 

RANKS 6.5333 8.2333 7.3667 5.60 0 0 5.0667 6.2333 5.2667 6.5667 5.2333 4.8333 5.0667 

Table 9 

Running time of gap neighborhood vs. k -nearest neighborhood (second). 

Data set Gap k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 

WDBC 0.6899 0.6063 0.6073 0.5955 0.6006 0.5734 0.5731 0.5668 x 0.5879 0.5729 0.5729 

HILL 10.1766 7.2154 7.9743 8.1567 8.7216 8.5508 9.4345 9.8006 10.503 9.5903 9.2195 

HILL(noise) 10.1322 9.3604 8.8078 8.4224 7.912 7.8314 7.6347 7.6439 7.7622 7.4514 7.3396 

COLON 0.9872 0.9354 0.9546 0.9422 0.9364 0.9069 0.8772 0.8777 0.8806 0.857 0.8727 

SRBCT 1.0727 0.8914 0.893 0.8951 0.8957 0.9021 0.9042 0.9078 0.9156 0.9264 0.9261 

LUNG2 9.5273 9.0099 8.7382 9.3881 8.3438 8.9094 8.5721 8.576 8.535 8.0184 7.9948 

LYMPHOMA 2.1232 1.6433 1.7905 1.925 1.9071 2.0633 2.2135 2.2145 2.1162 2.3258 2.2252 

GLIOMA 1.6239 1.4353 1.4432 1.4918 1.5052 1.5356 1.5045 1.5549 1.5813 1.5877 1.542 

MLL 3.1765 2.6611 2.7075 2.7643 2.7597 2.8109 2.8704 2.8721 2.8951 2.8962 2.9242 

PROSTATE 5.1129 4.3171 4.3514 4.3227 4.4209 4.4356 4.4167 4.4214 4.5207 4.4788 4.5703 

DLBCL 4.4048 3.6622 3.6575 3.7036 3.7781 3.8455 3.7975 3.7746 3.7346 3.7627 3.8617 

LEU 4.1749 3.5339 3.5496 3.7053 3.5895 3.6599 3.73 3.754 3.6499 3.6744 3.6665 

CAR 17.6736 16.2936 15.3579 14.9634 15.1571 15.1638 15.055 15.1574 15.2149 14.9653 15.1031 

ARCENE 23.1423 18.4634 18.8765 19.0717 19.329 19.2928 19.1178 19.0015 19.2361 18.6928 19.0262 

LUNG 29.2766 22.2608 22.4768 22.6138 22.5449 22.7162 22.833 22.7999 22.8687 22.9523 23.084 

AVERAGE 8.2196 6.8193 6.8124 6.8641 6.8267 6.8798 6.9022 6.9282 7.0 0 01 6.8501 6.8619 

RANKS 10.6667 3.7333 4.4 5.0 5.2667 6.1333 5.6 6.2 6.8667 5.9 6.2333 

5.4. The influence of feature stream order 

In this section, we validate the influence of feature stream order on our new neighborhood relation and new online 

streaming feature selection algorithm. We compare three types of feature stream orders: original, inverse and random with 

our new algorithm OFS −A3M. 

Figs. 4 and 5 show the experimental results of our new algorithm with three different f eature stream orders on these 

data sets (the data sets from 1 to 15 are WDBC, HILL, HILL (noise), COLON, SRBCT, LUNG2, LYMPHOMA, GLIOMA, MLL, 

PROSTATE, DLBCL, LEU, CAR, ARCENE, and LUNG). Figs. 6 and 7 show the number of selected features and running time on 

these data sets. 

In order to validate whether these three types of feature stream orders have a significant difference in predictive accu- 

racy, running time and number of selected features, we conduct the Friedman test at a 95% significance level under the null 

hypothesis. The p -values of the original vs. inverse and random orders are given in Table 11 . 

From Table 11 , we can observe that there is no significant difference between these three types of feature stream orders. 

From Figs. 4 –7 , we can see that there are minor fluctuations on some data sets, and on most of these data sets, these three 

orders basically overlap each other. This indicates that the feature stream order has little influence on our new neighborhood 

relation and new online streaming feature selection algorithm. 

5.5. OFS-A3M vs. traditional feature selection methods 

In this section, we compare OFS-A3M with seven representative traditional feature selection methods, including Fisher 

[6] , ReliefF [22] , PCC (Pearson Correlation Coefficient) [32] , Laplacian Score [8] , L0 [7] , MI (mutual information) [27] and FSV 

[2] . 
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Table 10 

Gap neighborhood vs. k -nearest neighborhood (the mean number of selected features). 

Data set Gap k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 

WDBC 5.8 4.9 6 7.1 6.5 6.9 7 6.6 6.7 7 6.9 

HILL 6.1 4.9 7.6 13.3 12.6 14.3 17.2 17.1 13.2 12.2 10.4 

HILL(noise) 5.7 11.9 9.4 7.7 4.8 5.5 4.5 4.2 4 3.1 2.7 

COLON 15.8 9.2 11.7 17.5 14.8 18.6 21.8 22.1 15.5 20.6 23.9 

SRBCT 8.9 4.9 3.6 4.4 3.3 4.5 7.3 8 9.7 13.6 16.1 

LUNG2 38.2 13.1 17.9 26 22.2 35.7 42.5 40.2 29.4 41.6 47.2 

LYMPHOMA 5.2 3.2 3.5 4.6 3.9 4.9 6.1 5.8 6.4 6.5 6.5 

GLIOMA 19.6 8.9 11.8 18.3 16.4 25.7 25.8 24.8 22 26.6 31.7 

MLL 9.6 6.1 6.9 8.2 9.5 10.8 11 13.3 10.6 13.9 16.5 

PROSTATE 29.3 9.5 10.9 16.2 15.6 23.6 27.3 29.5 24.5 33.2 37.1 

DLBCL 18.8 7.7 10 14.5 12.1 17.9 19.7 20.2 14.3 21.2 23.7 

LEU 28.9 5.5 6.3 9.9 9.6 13.5 14.2 18.8 17 25.3 24.7 

CAR 42.4 25.1 26.2 32.5 31.9 37.6 37.5 39.5 36.1 40.3 38.4 

ARCENE 27.7 15.2 19.2 28.1 24.5 33.9 34.6 36.2 30.5 35.1 36.4 

LUNG 16.6 3.4 4.5 5.8 6.8 7.2 9.2 9.4 11.7 13 14.8 

AVERAGE 18.5 8.9 10.3 14.2 12.9 17.3 19.0 19.7 16.7 20.8 22.4 

RANKS 6.6667 1.9333 2.6667 5.1333 3.4667 6.3667 7.7667 7.9333 6.0667 8.8 9.2 

Fig. 4. Predictive accuracy of three different feature stream orders (KNN). 

Table 11 

The p -values of original vs. inverse and random. 

Original Inverse Random 

KNN classifer − 1.0 0 0 0 0.1967 

SVM classifer − 0.5930 0.7815 

Running time − 0.1967 0.1967 

Number of selected features − 0.1967 1.0 0 0 0 
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Fig. 5. Predictive accuracy of three different feature stream orders (SVM). 

Table 12 

Predictive accuracy using the KNN classifier. 

Data set OFS-A3M Fisher PCC ReliefF MI Laplacian L0 FSV 

WDBC 0.9366 0.9332 0.9332 0.8929 0.9314 0.9297 0.9322 0.8981 

HILL 0.5992 0.5372 0.5372 0.514 0.5545 0.5058 0.5603 0.5512 

HILL(noise) 0.5529 0.4893 0.4893 0.5322 0.5041 0.4983 0.505 0.4967 

COLON 0.8 0.8 0.7833 0.7667 0.7667 0.5 0.7333 0.6167 

SRBCT 0.95 0.9667 0.85 0.8833 0.95 0.3833 0.6833 0.6833 

LUNG2 0.915 0.875 0.9 0.895 0.89 0.86 0.775 0.885 

LYMPHOMA 0.95 0.85 0.85 0.7833 0.95 0.8167 0.5833 0.5833 

GLIOMA 0.74 0.6 0.72 0.44 0.56 0.5 0.52 0.6 

MLL 0.9286 0.8286 0.7714 0.8857 0.8571 0.9 0.6143 0.8714 

PROSTATE 0.91 0.87 0.87 0.9 0.9 0.58 0.89 0.63 

DLBCL 0.95 0.885 0.885 0.905 0.7375 0.855 0.7475 0.71 

LEU 0.9 0.9143 0.9143 0.9429 0.9571 0.6714 0.9 0.6571 

CAR 0.8059 0.7 0.7412 0.8882 0.8471 0.7824 0.5118 0.6824 

ARCENE 0.8 0.66 0.465 0.56 0.73 0.69 0.83 0.71 

LUNG 0.9944 0.9889 0.9889 0.9889 0.9889 0.85 0.9722 0.84 4 4 

AVERAGE 0.8869 0.8282 0.8115 0.8199 0.8445 0.6990 0.7300 0.7061 

RANKS 1.6667 4.3333 4.4667 4.2333 3.5667 6.1333 5.4333 6.1667 

All these algorithms are implemented in MATLAB. The K value of ReliefF is set to 5 for the best performance. None of 

these seven traditional feature selection methods can handle the scenario of feature streaming in an online manner. Thus, 

we rank all features from high to low and select the same number of features as OFS-A3M. We evaluate OFS-A3M and all 

competing ones on the predictive accuracy with 10-fold cross-validation. 

Tables 12 and 13 summarize the predictive accuracy of OFS-A3M against the other seven competing algorithms using the 

basic classifiers of KNN and SVM. The p -values on predictive accuracy with KNN and SVM are 2.1935e −07 and 1.0765e −06 

respectively. Thus, there is a significant difference among these eight compared algorithms on predictive accuracy with both 

KNN and SVM. According to the Nemenyi test, the value of CD(critical difference) is 2.7132. 

From Tables 12 and 13 , we have the following observations. 
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Fig. 6. Running time of three different feature stream orders (second). 

Table 13 

Predictive accuracy using SVM as the base classifier. 

Data set OFS-A3M Fisher PCC ReliefF MI Laplacian L0 FSV 

WDBC 0.9525 0.9578 0.9578 0.942 0.9279 0.9331 0.9344 0.9279 

HILL 0.5281 0.5099 0.5099 0.5116 0.5116 0.5083 0.514 0.5116 

HILL(noise) 0.5157 0.4843 0.4843 0.495 0.4909 0.4835 0.4917 0.4909 

COLON 0.8167 0.7667 0.7667 0.75 0.7833 0.6333 0.6667 0.7 

SRBCT 0.9667 0.9333 0.85 0.9167 0.95 0.4833 0.7333 0.7333 

LUNG2 0.92 0.85 0.895 0.925 0.89 0.845 0.845 0.885 

LYMPHOMA 0.9 0.8833 0.8667 0.7333 0.9333 0.8667 0.6333 0.6333 

GLIOMA 0.8 0.52 0.6 0.42 0.58 0.44 0.68 0.54 

MLL 0.9286 0.8429 0.8571 0.9 0.9143 0.9143 0.6571 0.8857 

PROSTATE 0.88 0.87 0.87 0.9 0.92 0.67 0.9 0.72 

DLBCL 0.95 0.88 0.8675 0.8675 0.8375 0.9 0.76 0.735 

LEU 0.9286 0.9286 0.9286 0.9429 0.9286 0.7143 0.9 0.6429 

CAR 0.8118 0.7059 0.7588 0.8824 0.8647 0.7765 0.7 0.7059 

ARCENE 0.745 0.745 0.565 0.66 0.73 0.59 0.83 0.775 

LUNG 0.9889 0.9833 0.9833 0.9889 0.9833 0.8722 0.9778 0.8889 

AVERAGE 0.8863 0.8257 0.8173 0.8238 0.8595 0.7254 0.7736 0.7370 

RANKS 1.9667 4.6 4.6667 3.6333 3.5333 6.3667 5.2667 5.9667 

• OFS −A3M vs. Fisher. According to the average ranks and the value of critical difference, there is no significant difference 

between OFS −A3M and Fisher on predictive accuracy at a 95% significance level under the null hypothesis. OFS −A3M 

outperforms Fisher on twelve of the fifteen datasets in both cases with KNN and SVM. Fisher computes a score for 

each feature as the ratio of inter-class separation and intra-class variance. It measures the features independently, and it 

cannot consider the information of the selected feature set as a whole. 
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Fig. 7. The mean number of selected features in three different feature stream orders. 

• OFS-A3M vs. PCC. There is no significant difference between OFS-A3M and PCC on predictive accuracy. OFS-A3M out- 

performs PCC on fourteen of the fifteen datasets in both cases. PCC gets the predictive accuracy about 46% and 56% on 

dataset ARCENE with KNN and SVM, while OFS-A3M gets the predictive accuracy of 80% and 74% respectively. OFS-A3M 

is higher PCC over 20% on the predictive accuracy of this dataset. In general, PCC cannot handle some datasets well. 

• OFS-A3M vs. ReliefF. ReliefF is similar to OFS-A3M because they both use the neighbors’ information for feature selection. 

There is no significant difference between OFS-A3M and ReliefF on predictive accuracy with KNN and SVM. OFS-A3M gets 

a higher predictive accuracy than ReliefF on eleven of the fifteen datasets. ReliefF estimates the quality of the features 

according to how well their values differentiate data samples that are near to each other. ReliefF does not discriminate 

among redundant features, and performance decreases with few data. 

• OFS-A3M vs. MI. There is no significant difference between OFS-A3M and MI with both KNN and SVM. OFS-A3M out- 

performs MI on ten of the fifteen datasets at least. Especially on data set GLIOMA, OFS-A3M over MI 20% on predictive 

accuracy with both KNN and SVM. MI considers the mutual information between the distribution of the values of a given 

feature and the membership to a particular class, and the features are evaluated independently. 

• OFS-A3M vs. Laplacian Score. Laplacian Score gets the lowest mean predictive accuracy among these competing algo- 

rithms. There is a significant difference between OFS-A3M and Laplacian Score on predictive accuracy with both KNN 

and SVM. OFS-A3M outperforms Laplacian Score on all of these datasets. Laplacian Score is an unsupervised feature se- 

lection algorithm which does not use the class information of each instance, and the importance of a feature is evaluated 

by its power of locality preserving. 

• OFS-A3M vs. L0. L0 is an embedded feature selection method. There is a significant difference between OFS-A3M and L0 

on predictive accuracy with both KNN and SVM. OFS-A3M outperforms L0 on thirteen of the fifteen data sets at least. 

On data sets SRBCT, LYMPHOMA and MLL, OFS-A3M over L0 almost 30% on predictive accuracy with both KNN and SVM. 

This indicates that L0 cannot handle some types of datasets well. 

• OFS-A3M vs. FSV. FSV is a wrapper method, where the feature selection process is injected into the training of an SVM 

by a linear programming technique. There is a significant difference between OFS-A3M and FSV on predictive accuracy. 

Meanwhile, FSV cannot handle some types of datasets well. 
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Table 14 

Predictive accuracy using KNN as the base classifier. 

Data set OFS-A3M Alpha-investing OSFS Fast-OSFS SAOLA 

WDBC 0.9367 0.9561 0.9614 0.9614 0.9122 

HILL 0.6140 0.6455 0 0 0 

HILL(noise) 0.5653 0.5686 0 0 0 

COLON 0.7833 0.4667 0.7333 0.7667 0.7167 

SRBCT 0.9667 0.5667 0.85 0.75 0.7167 

LUNG2 0.92 0.875 0.79 0.865 0.89 

LYMPHOMA 0.95 0.7167 0.9167 0.9167 0.95 

GLIOMA 0.74 0.46 0.58 0.6 0.5 

MLL 0.9429 0.9286 0.7714 0.8714 0.9429 

PROSTATE 0.88 0.85 0.84 0.86 0.86 

DLBCL 0.9125 0.805 0.8875 0.8425 0.8875 

LEU 0.9429 0.6143 0.8857 0.9143 0.8857 

CAR 0.7588 0.7176 0.4588 0.6471 0.7529 

ARCENE 0.785 0.71 0.62 0.69 0.63 

LUNG 0.9778 0.8222 0.9778 0.9833 0.9833 

AVERAGE 0.845 0.7135 0.6 84 8 0.7112 0.7085 

RANKS 1.5667 3.6667 3.7 3.0 3.0667 

Table 15 

Predictive accuracy using SVM as the base classifier. 

Data set OFS-A3M Alpha-investing OSFS Fast-OSFS SAOLA 

WDBC 0.9543 0.9737 0.9649 0.9614 0.9192 

HILL 0.5339 0.5628 0 0 0 

HILL(noise) 0.5355 0.5273 0 0 0 

COLON 0.8333 0.6333 0.7333 0.7833 0.8167 

SRBCT 0.95 0.3667 0.8 0.7667 0.8 

LUNG2 0.935 0.935 0.875 0.87 0.885 

LYMPHOMA 0.9333 0.7333 0.9 0.8833 0.95 

GLIOMA 0.78 0.44 0.54 0.58 0.66 

MLL 0.9143 0.9571 0.8429 0.8714 0.8857 

PROSTATE 0.85 0.88 0.89 0.89 0.89 

DLBCL 0.9175 0.8425 0.85 0.88 0.8925 

LEU 0.9429 0.7 0.9143 0.9286 0.8857 

CAR 0.8294 0.6353 0.5059 0.6824 0.7882 

ARCENE 0.805 0.755 0.625 0.64 0.655 

LUNG 0.9833 0.8833 0.9778 0.9833 0.9889 

AVERAGE 0.8465 0.7216 0.6946 0.7146 0.7344 

RANKS 1.8 3.4333 3.7 3.3667 2.7 

In sum, OFS-A3M provides best overall performance on these datasets and gets the highest mean predictive accuracy 

with both KNN and SVM. 

5.6. OFS-A3M vs. online streaming feature selection methods 

In this section, we compare our algorithm with four state-of-the-art online feature selection methods: Alpha-investing 

[40] , OSFS [33] , Fast-OSFS [33] , SAOLA [37] . 

All aforementioned algorithms are implemented in MATLAB [36] . The significance level α is set to 0.01 for OSFS, Fast- 

OSFS, and SAOLA. For Alpha-investing, the parameters are set to the values used in [40] . 

Tables 14 and 15 summarize the predictive accuracy of OFS-A3M against the other four algorithms using the KNN and 

SVM classifiers. The p -values of Friedman test on KNN and SVM are 5.7467e-04 and 0.0059 respectively. Tables 16 and 17 

show the running time and the mean number of selected features of OFS-A3M against other four algorithms. The p -values 

are 2.5014e-21 and 1.1009e-07 respectively. Thus, there is a significant difference among these five compared algorithms on 

predictive accuracy, running time and number of selected features. According to the Nemenyi test, the value of CD(critical 

difference) is 1.5758. 

From Tables 14–17 , we have the following observations. 

• OFS-A3M vs. Alpha-investing. Alpha-investing is the fastest algorithm among all these five compared methods. According 

to the average ranks and the value of critical difference, there is a significant difference between OFS-A3M and Alpha- 

investing on predictive accuracy with KNN and SVM. From Tables 14 and 15 , we can see that OFS-A3M outperforms 

Alpha-investing on eleven of the fifteen data sets at least with both KNN and SVM. Meanwhile, we can see that the 

features selected by Alpha-investing cannot fit for some data sets. For example, Alpha-investing only gets the predictive 
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Table 16 

Running time (seconds). 

Data set OFS-A3M Alpha-investing OSFS Fast-OSFS SAOLA 

WDBC 0.7157 0.0034 0.1193 0.0546 0.0137 

HILL 10.6571 0.0097 0.0154 0.0151 0.0154 

HILL(noise) 10.8333 0.0098 0.0153 0.0151 0.0155 

COLON 1.0537 0.0697 0.4393 0.3098 0.3286 

SRBCT 1.0922 0.081 1.834 0.5049 0.8169 

LUNG2 9.1273 0.6148 73.2368 3.1801 2.1788 

LYMPHOMA 2.2202 0.1958 10.2772 2.0675 4.4469 

GLIOMA 1.6099 0.2234 5.1661 1.4063 2.2471 

MLL 3.4648 0.4317 11.7961 2 4.8164 

PROSTATE 5.1458 0.3403 2.4835 1.121 1.4128 

DLBCL 4.412 0.4196 3.3888 1.3873 1.7952 

LEU 4.2766 0.4177 4.1138 1.3986 1.9001 

CAR 18.31 1.557 77.7738 4.1396 3.7589 

ARCENE 23.0144 0.9647 9.2767 2.1529 3.334 

LUNG 29.3495 1.0958 80.7153 5.247 8.197 

AVERAGE 8.3521 0.4289 18.71 1.6666 2.3518 

RANKS 4.3333 1.0 4.3667 2.20 0 0 3.1 

Table 17 

The mean number of selected features. 

Data set OFS-A3M Alpha-investing OSFS Fast-OSFS SAOLA 

WDBC 5.7 19.3 3.1 4 2 

HILL 6.2 9 0 0 0 

HILL(noise) 5.4 7 0 0 0 

COLON 14.6 1 2 2.5 3.9 

SRBCT 9.7 1 2.8 4.7 19.5 

LUNG2 43.7 39.4 6.5 9.5 28.2 

LYMPHOMA 5.2 3.2 3.1 6.1 37.6 

GLIOMA 21.5 2.7 1.7 4.2 15.2 

MLL 7.1 9.9 2.6 5.2 31 

PROSTATE 27.9 2.1 1.5 3.6 12.2 

DLBCL 19.8 2.2 2.3 4.2 12.9 

LEU 22.1 2.1 2.5 4.8 20.9 

CAR 40.7 27.8 5.6 9.4 39.7 

ARCENE 25.8 9.1 3.1 5.9 19.6 

LUNG 11.2 2.6 4.3 7.7 52.9 

AVERAGE 17.7 9.2 2.7 4.7 19.7 

RANKS 4.40 0 0 2.6667 1.5333 2.6667 3.7333 

accuracy of around 0.4 and 0.5 on data sets GLIOMA and SRBCT in cases of KNN and SVM respectively. The reason is that 

these data sets are very sparse and Alpha-investing can only select the first few features of these data sets. 

• OFS-A3M vs. OSFS. There is a significant difference between OFS-A3M and OSFS on predictive accuracy in cases of KNN 

and SVM respectively. OFS-A3M outperforms OSFS on twelve of the fifteen datasets with both KNN and SVM. On data sets 

HILL and HILL with noise, OSFS cannot select any features and gets the prediction accuracy 0. On dataset GLIOMA, OSFS 

only gets the predictive accuracy around 0.5 in cases of KNN and SVM respectively, while OFS-A3M gets the predictive 

accuracy above 0.7. In addition, OFS-A3M is faster than OSFS on running time. OSFS selects the fewest number of features, 

among all these five compared methods. Thus, some important information is missing which causes the lower predictive 

accuracy. 

• OFS-A3M vs. Fast-OSFS. There is no significant difference between OFS-A3M and Fast-OSFS on predictive with KNN and 

SVM respectively. OFS-A3M performs better than Fast-OSFS on thirteen of the fifteen datasets. Fast-OSFS is faster than 

OFS-A3M. Nevertheless, similar to OSFS, Fast-OSFS selects very few features on data sets, which leads to the missing of 

some important information. 

• OFS-A3M vs. SAOLA. There is no significant difference between OFS-A3M and SAOLA on predictive accuracy. SAOLA is 

faster than OFS-A3M. However, OFS-A3M outperforms SAOLA on twelve of the fifteen datasets with both KNN and SVM. 

On the dataset HILL and HILL with noise, SAOLA cannot select any features and get the predictive accuracy 0. This 

demonstrates that SAOLA cannot handle some types of data well and can not select any features on these datasets. 

In sum, our algorithm OFS-A3M is not faster than some competing algorithms of Alpha-investing, Fast-OSFS, and SAOLA, 

but it outperforms all competing algorithms in predictive accuracy on these datasets. 
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6. Conclusion 

Most of existing online streaming feature selection methods need domain information before learning and specifying 

some parameters in advance. It is hence a challenge to specify unified and optimal values of parameters for all different 

types of data sets. 

In this paper, we defined a new Gap neighborhood relation with adapted neighbors and proposed a new online streaming 

feature selection method, called OFS-A3M. The Gap neighborhood relation uses the gap information between neighbors of 

the target object to decide the set of final considered instances. In terms of Neighborhood Rough Set Theory, OFS-A3M does 

not need the domain knowledge before learning. Based on the Gap neighborhood relation, OFS-A3M needn’t specify any pa- 

rameters in advance. With three evaluation criteria of “maximal-dependency, maximal-relevance, and maximal-significance”, 

our new approach can select features with high correlation, high dependency, and low redundancy. In order to validate the 

effectiveness of our new Gap neighborhood relation, we conducted the experiments to compare with δ neighborhood rela- 

tion and k -nearest neighborhood relation. The results with the Friedman test showed that there is no significant difference 

between Gap and the other two neighborhood relations with optimal parameter values. When comparing to seven tra- 

ditional feature selection methods and four state-of-the-art online feature selection algorithms, OFS-A3M performed better 

than traditional feature selection methods with the same number of features and it was superior to online streaming feature 

selection algorithms in an online manner. 

However, the time complexity of OFS-A3M is relatively high in comparison with most of the state-of-the-art online 

streaming feature selection methods. Thus, our future work will focus on how to reduce the running time of our algorithm. 
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